Installing SimGrid
SimGrid should work out of the box on Linux, macOS, FreeBSD, and Windows (with WSL).
Pre-compiled Packages
Binaries for Linux
To get all of SimGrid on Debian or Ubuntu, simply type one of the following lines, or several lines if you need several languages.
$ apt install libsimgrid-dev # if you want to develop in C or C++
$ apt install python3-simgrid # if you want to develop in Python
If you use the Nix package manager, the latest SimGrid release is packaged as simgrid
in Nixpkgs.
Previous SimGrid versions are maintained in NUR-Kapack and are available
pre-compiled in release and debug modes on the capack cachix binary cache
— refer to NUR-Kapack’s documentation for usage instructions.
If you use a pacman-based system (e.g., Arch Linux and derived distributions), the latest SimGrid is available in the simgrid AUR package — refer to AUR official documentation for installation instructions.
If you build pre-compiled packages for other distributions, drop us an email.
Binaries from macOS
SimGrid can be found in the Homebrew package manager. Troubleshooting:
- warning: dylib (libsimgrid.dylib) was built for newer macOS version (14.0) than being linked (13.3)
This was reported with the SimGrid version from Homebrew on a Mac book air M1 (ARM). The solution is simply to export this variable before the compilation of your binaries:
export MACOSX_DEPLOYMENT_TARGET=14.0
Version numbering and deprecation
SimGrid tries to be both a research instrument that you can trust, and a vivid project targeting the future issues. We have 4 stable versions per year, numbered 3.24 or 3.25. Backward compatibility is ensured for one year: Code compiling without warning on 3.24 will still compile with 3.28, but maybe with some deprecation warnings. You should update your SimGrid installation at least once a year and fix those deprecation warnings: the compatibility wrappers are usually removed after 4 versions. Another approach is to never update your SimGrid installation, but we don’t provide any support to old versions.
Interim versions (also called pre-versions) may be released between stable releases. They are numbered 3.X.Y, with even Y (for example, 3.23.2 was released on July 8. 2019 as a pre-version of 3.24). These versions should be as usable as regular stable releases, even if they may be somewhat less tested and documented. They play no role in our deprecation handling, and they are not really announced to not spam our users.
Version numbered 3.X.Y with odd Y are git versions. They often work, but no guarantee is given whatsoever (all releases are given “as is”, but that’s even more so for these unreleased versions).
Installing from the Source
Getting the Dependencies
- C++ compiler (either g++, clang, or icc).
We use the C++17 standard, and older compilers tend to fail on us. It seems that g++ 7.0 or higher is required nowadays (because of boost). SimGrid compiles well with clang or icc too.
- Python 3.
SimGrid should build without Python. That is only needed by our regression test suite.
- cmake (v3.5).
ccmake
provides a nicer graphical interface compared tocmake
. Presst
inccmake
if you need to see absolutely all configuration options (e.g., if your Python installation is not standard).- boost mandatory components (at least v1.48, v1.59 recommended)
On Debian / Ubuntu:
apt install libboost-dev
On CentOS / Fedora:
dnf install boost-devel
On macOS with homebrew:
brew install boost
- boost recommended components (optional).
boost-context may be used instead of our own fast context switching code which only works on amd64.
boost-stacktrace is used to get nice stacktraces on errors in SimGrid.
On Debian / Ubuntu:
apt install libboost-context-dev libboost-stacktrace-dev
- python bindings (optional):
On Debian / Ubuntu:
apt install pybind11-dev python3-dev
- Model-checking mandatory dependencies
On Debian / Ubuntu:
apt install libevent-dev
- Eigen3 (optional)
On Debian / Ubuntu:
apt install libeigen3-dev
On CentOS / Fedora:
dnf install eigen3-devel
On macOS with homebrew:
brew install eigen
Use EIGEN3_HINT to specify where it’s installed if cmake doesn’t find it automatically. Set EIGEN3_HINT=OFF to disable detection even if it could be found.
- JSON (optional, for the DAG wfcommons loader)
On Debian / Ubuntu:
apt install nlohmann-json3-dev
Use nlohmann_json_HINT to specify where it’s installed if cmake doesn’t find it automatically.
For platform-specific details, please see below.
Getting the Sources
Grab the last stable release from FramaGit, and compile it as follows:
$ tar xf simgrid-3-XX.tar.gz
$ cd simgrid-*
$ cmake -DCMAKE_INSTALL_PREFIX=/opt/simgrid -GNinja .
$ make
$ make install
If you want to stay on the bleeding edge, get the current git version, and recompile it as with stable archives. You may need some extra dependencies.
$ git clone https://framagit.org/simgrid/simgrid.git
$ cd simgrid
$ cmake -DCMAKE_INSTALL_PREFIX=/opt/simgrid .
$ make
$ make install
Build Configuration
This section is about compile-time options, which are very different from run-time options. Compile-time options fall into two categories. SimGrid-specific options define which part of the framework to compile while Generic options are provided by cmake itself.
Warning
Our build system often gets mixed up if you change something on
your machine after the build configuration. For example, if
SimGrid fails to detect your fortran compiler, it is not enough to
install a fortran compiler. You also need to delete all Cmake
files, such as CMakeCache.txt
. Since Cmake also generates some
files in the tree, you may need to wipe out your complete tree and
start with a fresh one when you install new dependencies.
A better solution is to build out of the source tree.
Generic build-time options
These options specify, for example, the path to various system elements (Python
path, compiler to use, etc). In most case, CMake automatically discovers the
right value for these elements, but you can set them manually as needed.
Notably, such variables include CC
and CXX
, defining the paths to the C
and C++ compilers; CFLAGS
and CXXFLAGS
specifying extra options to pass
to the C and C++ compilers; and PYTHON_EXECUTABLE
specifying the path to the
Python executable.
The best way to discover the exact name of the option that you need to
change is to press t
in the ccmake
graphical interface, as all
options are shown (and documented) in the advanced mode.
Once you know their name, there are several ways to change the values of
build-time options. You can naturally use the ccmake graphical
interface for that, or you can use environment variables, or you can
prefer the -D
flag of cmake
.
For example, you can change the compilers by issuing these commands to set some environment variables before launching cmake:
$ export CC=gcc-5.1
$ export CXX=g++-5.1
The same can be done by passing -D
parameters to cmake, as follows.
Note that the dot at the end is mandatory (see Out of Tree Compilation).
$ cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ .
SimGrid compilation options
Here is the list of all SimGrid-specific compile-time options (the default choice is in upper case).
- CMAKE_INSTALL_PREFIX (path)
Where to install SimGrid (/opt/simgrid, /usr/local, or elsewhere).
- enable_compile_optimizations (ON/off)
Ask the compiler to produce efficient code. You probably want to leave this option activated, unless you plan to modify SimGrid itself: efficient code takes more time to compile, and appears mangled to some debuggers.
- enable_compile_warnings (on/OFF)
Ask the compiler to issue error messages whenever the source code is not perfectly clean. If you are a SimGrid developer, you have to activate this option to enforce the code quality. As a regular user, this option is of little use.
- enable_debug (ON/off)
Disabling this option discards all log messages of severity debug or below at compile time (see Textual logging). The resulting code is marginaly faster than if you discard these messages at runtime, but it obviously becomes impossible to get any debug info from SimGrid when things go wrong.
- enable_documentation (on/OFF)
Generates the documentation pages. Building the documentation is not as easy as it used to be, and you should probably use the online version for now.
- enable_lto (ON/off)
Enables the Link Time Optimization in the C++ compiler. This feature really speeds up the code produced, but it is fragile with older gcc versions.
- enable_maintainer_mode (on/OFF)
(dev only) Regenerates the XML parsers whenever the DTD is modified (requires flex and flexml).
- enable_mallocators (ON/off)
Activates our internal memory caching mechanism. This produces faster code, but it may fool the debuggers.
- enable_model-checking (ON/off)
Activates the verification mode. This should not impact the performance of your simulations if you build it but don’t use it, but you can still disable it to save some compilation time.
- enable_ns3 (on/OFF)
Activates the ns-3 bindings. See section ns-3 as a SimGrid model.
- enable_smpi (ON/off)
Allows one to run MPI code on top of SimGrid.
- enable_testsuite_McMini (on/OFF)
Adds several extra tests for the model checker module (targeting threaded applications).
- enable_testsuite_smpi_MBI (on/OFF)
Adds many extra tests for the model checker module (targeting MPI applications).
- enable_testsuite_smpi_MPICH3 (on/OFF)
Adds many extra tests for the MPI module.
- minimal-bindings (on/OFF)
Take as few optional dependencies as possible, to get minimal library bindings in Python.
- NS3_HINT (empty by default)
Alternative path into which ns-3 should be searched for.
- EIGEN3_HINT (empty by default)
Alternative path into which Eigen3 should be searched for. Providing the value OFF as an hint will disable the detection alltogether.
- SIMGRID_PYTHON_LIBDIR (auto-detected)
Where to install the Python module library. By default, it is set to the cmake Python3_SITEARCH variable if installing to /usr, and a modified version of that variable if installing to another path. Just force another value if the auto-detected default does not fit your setup.
- SMPI_C_FLAGS, SMPI_CXX_FLAGS, SMPI_Fortran_FLAGS (string)
Default compiler options to use in smpicc, smpicxx, or smpiff. This can be useful to set options like “-m32” or “-m64”.
Reset the build configuration
To empty the CMake cache (either when you add a new library or when
things go seriously wrong), simply delete your CMakeCache.txt
. You
may also want to directly edit this file in some circumstances.
Out of Tree Compilation
By default, the files produced during the compilation are placed in the source directory. It is however often better to put them all in a separate directory: cleaning the tree becomes as easy as removing this directory, and you can have several such directories to test several parameter sets or architectures.
For that, go to the directory where the files should be produced, and invoke cmake (or ccmake) with the full path to the SimGrid source as last argument.
$ mkdir build
$ cd build
$ cmake [options] ..
$ make
Existing Compilation Targets
In most cases, compiling and installing SimGrid is enough:
$ make
$ make install # try "sudo make install" if you don't have the permission to write
In addition, several compilation targets are provided in SimGrid. If
your system is well configured, the full list of targets is available
for completion when using the Tab
key. Note that some of the
existing targets are not really for public consumption so don’t worry
if some do not work for you.
make: Build the core of SimGrid that gets installed, but not any example.
make examples: Build the examples, which are needed by the tests.
make simgrid: Build only the SimGrid library. Not any example nor the helper tools.
make s4u-comm-pingpong: Build only this example (works for any example)
make python-bindings: Build the Python bindings
make clean: Clean the results of a previous compilation
make install: Install the project (doc/ bin/ lib/ include/)
make dist: Build a distribution archive (tar.gz)
make distcheck: Check the dist (make + make dist + tests on the distribution)
make documentation: Create SimGrid documentation
If you want to see what is really happening, try adding VERBOSE=1
to
your compilation requests:
$ make VERBOSE=1
Testing your build
Once everything is built, you may want to test the result. SimGrid
comes with an extensive set of regression tests (as described in the
@ref inside_tests “insider manual”). The tests are not built by
default, so you first have to build them with make tests
. You can
then run them with ctest
, that comes with CMake. We run them
every commit and the results are on our Jenkins.
$ make tests # Build the tests
$ ctest # Launch all tests
$ ctest -R s4u # Launch only the tests whose names match the string "s4u"
$ ctest -j4 # Launch all tests in parallel, at most 4 concurrent jobs
$ ctest --verbose # Display all details on what's going on
$ ctest --output-on-failure # Only get verbose for the tests that fail
$ ctest -R s4u -j4 --output-on-failure # You changed S4U and want to check that you \
# didn't break anything, huh? \
# That's fine, I do so all the time myself.
macOS-specific instructions
SimGrid compiles like a charm with clang (version 3.0 or higher) on macOS:
$ cmake -DCMAKE_C_COMPILER=/path/to/clang -DCMAKE_CXX_COMPILER=/path/to/clang++ .
$ make
Troubleshooting your macOS build.
- CMake Error: Parse error in cache file build_dir/CMakeCache.txt. Offending entry: /SDKs/MacOSX10.8.sdk
This was reported with the XCode version of clang 4.1. The work around is to edit the
CMakeCache.txt
file directly, to change the following entry:CMAKE_OSX_SYSROOT:PATH=/Applications/XCode.app/Contents/Developer/Platforms/MacOSX.platform/Developer
You can safely ignore the warning about “-pthread” not being used, if it appears.
- /usr/include does not seem to exist
This directory does not exist by default on modern macOS versions, and you may need to create it with
xcode-select -install
Windows-specific instructions
The best solution to get SimGrid working on windows is to install the Ubuntu subsystem of Windows 10. All of SimGrid works in this setting. Native builds never really worked, and they are disabled starting with SimGrid v3.33.
Python-specific instructions
Once you have the Python development headers installed as well as a recent version of the pybind11 module (version at least 2.4), recompiling the Python bindings from the source should be as easy as:
# cd simgrid-source-tree
$ python setup.py build install
Starting with SimGrid 3.13, it should even be possible to install simgrid without downloading the source with pip:
$ pip install simgrid
If you installed SimGrid to a non-standard directory (such as /opt/simgrid
as advised earlier), you should tell python where
to find the libraries as follows (notice the elements suffixed to the configured prefix).
$ PYTHONPATH="/opt/simgrid/lib/python3/dist-packages" LD_LIBRARY_PATH="/opt/simgrid/lib" python your_script.py
You can add those variables to your bash profile to not specify it each time by adding these lines to your ~/.profile
:
export PYTHONPATH="$PYTHONPATH:/opt/simgrid/lib/python3/dist-packages"
export LD_LIBRARY_PATH="$PYTHONPATH:/opt/simgrid/lib"